添加绘图逻辑;

This commit is contained in:
2024-11-25 01:45:49 +08:00
parent 5cca8a0862
commit 38d6ff30a3

View File

@@ -1,7 +1,12 @@
import time
import datetime
import requests
import pandas as pd
from pathlib import Path
from bs4 import BeautifulSoup
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
API_URL = "https://energy-iot.chinatowercom.cn/api/device/device/historyPerformance"
@@ -25,49 +30,107 @@ headers = {
"sec-ch-ua-platform": "Windows",
}
SemaMap = {
'apt_temp': ('0305117001', 'adapter', "设备温度"),
'apt_volt_in': ('0305118001', 'adapter', "输入电压"),
'apt_curr_in': ('0305119001', 'adapter', "输入电流"),
'apt_volt_out': ('0305120001', 'adapter', "输出电压"),
'apt_curr_out': ('0305121001', 'adapter', "输出电流"),
'apt_power_out': ('0305122001', 'adapter', "输出功率"),
}
def get_history_data(device_id, data_type, times: tuple[int, int]):
""" 读取信号量历史数据, 返回接口json数据 """
body = {
"startTimestamp": 1732032000000,
"endTimestamp": 1732291199000,
"deviceCode": "TTE0102DX2406240497",
"mid": "0305120001",
"startTimestamp": times[0],
"endTimestamp": times[1],
"deviceCode": f"{device_id}",
"mid": f"{data_type}",
"businessType": "7",
"pageNum": 2,
"pageSize": 5,
"total": 0
}
req = requests.post(API_URL, data=body, headers=headers)
return req.json()
# 1. 读取本地HTML文件
file_path = Path(r'D:\WorkingProject\LightStackAdapter\Log\设备测试数据记录-铁塔主站\南和县牧村\Untitled-1.html')
html_content = file_path.read_text()
def adapter_status_graphs(device_id, times: tuple[int, int]):
""" 获取数据, 绘制图表 """
data_volt_in = get_history_data(device_id, SemaMap["apt_volt_in"], times)
data_curr_in = get_history_data(device_id, SemaMap["apt_curr_in"], times)
data_volt_out = get_history_data(device_id, SemaMap["apt_volt_out"], times)
data_power_out = get_history_data(device_id, SemaMap["apt_power_out"], times)
data_apt = []
for item in zip(data_volt_in['data'], data_volt_out['data'], data_curr_in['data'], data_power_out['data']):
print(item)
piont_time = time.mktime(time.strptime(item[0]['collectTime'], r"%Y-%m-%d %H:%M:%S"))
point_apt = {
'time': int(piont_time),
'volt_in': item[0]['value'],
'volt_out': item[1]['value'],
'curr_in': item[2]['value'],
'power_out': item[3]['value'],
}
data_apt.append(point_apt)
table_apt = pd.DataFrame(data_apt)
# 2. 解析HTML文件
soup = BeautifulSoup(html_content, 'html.parser')
# 图表绘制
chart_apt(table_apt)
# 3. 找到表格元素
table = soup.find_all('table') # 假设页面中只有一个表格,如果有多个表格,可能需要进一步筛选
def chart_apt(table_apt):
""" 绘制适配器信息图表 """
fig, ax1 = plt.subplots(figsize=(12, 6))
ax1.plot(table_apt['time'], table_apt['volt_in'], color='green', label='Input Voltage')
ax1.plot(table_apt['time'], table_apt['volt_out'], color='red', label='Output Voltage')
# ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M:%S'))
# 4. 提取表格数据
data = []
headers = []
# 设置x轴的主要刻度定位器为自动日期定位器这使得x轴上的刻度根据数据自动选择最合适的日期格式
ax1.xaxis.set_major_locator(mdates.AutoDateLocator())
# 提取表头
header_row = table.find('thead').find('tr')
for header in header_row.find_all('th'):
headers.append(header.text.strip())
ax2 = ax1.twinx()
# 绘制斜线阴影
for i in range(len(table_apt) - 1):
ax1.fill_between(
[table_apt['time'].iloc[i], table_apt['time'].iloc[i + 1]],
[table_apt['power_out'].iloc[i], table_apt['power_out'].iloc[i + 1]],
color='red', alpha=0.5)
# 提取数据行
for row in table.find('tbody').find_all('tr'):
row_data = []
for cell in row.find_all(['td', 'th']):
row_data.append(cell.text.strip())
data.append(row_data)
lines, labels = ax1.get_legend_handles_labels()
shadows, shadow_labels = ax2.get_legend_handles_labels()
ax1.legend(lines + shadows, labels + shadow_labels, loc='upper left')
# 5. 将数据保存为DataFrame
df = pd.DataFrame(data, columns=headers)
ax1.set_title('Device Data Visualization')
ax1.set_xlabel('Time')
ax1.set_ylabel('Voltage (V)')
ax2.set_ylabel('Power (W)')
# 6. 将DataFrame保存为CSV文件
output_file = 'extracted_table.csv'
df.to_csv(output_file, index=False, encoding='utf-8')
plt.show()
print(f'表格数据已成功提取并保存到 {output_file}')
def sim_data_apt(times:tuple[int, int]):
""" 模拟数据 """
t_start = time.mktime(time.strptime(times[0], r"%Y-%m-%d %H:%M:%S"))
t_end = time.mktime(time.strptime(times[1], r"%Y-%m-%d %H:%M:%S"))
count_data = (t_end - t_start) / (10 * 60)
time_list = range(int(t_start), int(t_end), 20 * 60)
time_list = tuple(map(lambda x: time.strftime(r"%Y-%m-%d %H:%M:%S", time.localtime(x)), time_list))
data = {
'time': time_list,
'volt_in': 10 + 10 * np.random.random(len(time_list)),
'curr_in': 1 + 2 * np.random.random(len(time_list)),
'volt_out': 54 + 2 * np.random.random(len(time_list)),
}
data['power_out'] = tuple(map(lambda x: x[0] * x[1], zip(data['volt_in'],data['curr_in'])))
return pd.DataFrame(data)
if __name__=='__main__':
import numpy as np
data = sim_data_apt(('2024-10-1 00:00:00', '2024-10-1 12:00:00'))
chart_apt(data)
plt.waitforbuttonpress()
pass